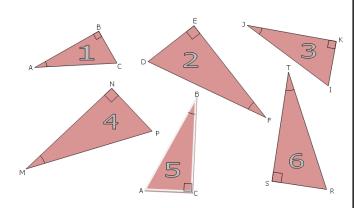
Exercice* 0:



Triangle 1 : Dans le triangle ABC rectangle en B, on a : $\cos(\widehat{A}) = \frac{AB}{AC}$. **Triangle 2 :** Dans le triangle DEF rectangle en E, on a :

 $\cos(\widehat{F}) = \frac{FE}{FD}$.

Triangle 3 : Dans le triangle IKJ rectangle en K, on a :

Triangle 4: Dans le triangle MNP rectangle en N, on a: $\cos(\widehat{M}) = \frac{MN}{MP}$.

Triangle 5: Dans le triangle ABC rectangle en C, on a : $\cos(\widehat{B}) = \frac{BC}{BA}.$

Triangle 6: Dans le triangle TSR rectangle en S, on a : $\cos(\widehat{T}) = \frac{TS}{TR}$.

Exercice* 1:

1.		$\cos(20) \approx 0.9$	$\cos(45) \approx 0.7$
	$\cos(55) \approx 0,6$	$\cos(90) = 0$	$\cos(0) = 1$

2	$\cos(\alpha) = 0$ $\operatorname{donc} \alpha = 90^{\circ}$	$\cos(\alpha) = 1$ $\operatorname{donc} \alpha = 0^{\circ}$	$\cos(\alpha) = 0.5$ $\operatorname{donc} \alpha = 60^{\circ}$
۷.	$\cos(\alpha) = 0, 2$ $\operatorname{donc} \alpha \approx 78^{\circ}$	$\begin{array}{ c c c c c } \cos(\alpha) = 0.9 \\ \text{donc } \alpha \approx 26^{\circ} \end{array}$	$\cos(\alpha) = 0,7$ $\operatorname{donc} \alpha \approx 46^{\circ}$

Exercice* 2 : ABC est un triangle rectangle en A, alors :

$$\cos(\widehat{ABC}) = \frac{BA}{BC}$$

$$\cos(\widehat{ABC}) = \frac{4}{8}$$

$$\cos(\widehat{ABC}) = 0, 5$$

$$\widehat{ABC} = \cos^{-1}(0, 5)$$

$$\widehat{ABC} = 60^{\circ}.$$

Exercice* 3: ABC est un triangle rectangle en A, alors:

$$\cos(\widehat{ABC}) = \frac{BA}{BC}$$

$$\cos(30) = \frac{BA}{9}$$

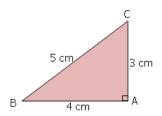
$$BA = 9 \times \cos(\widehat{30})$$

$$BA \approx 7, 8 \text{ cm}.$$

Exercice* 4:ABC est un triangle rectangle en A, alors:

$$\cos(\widehat{ABC}) = \frac{BA}{BC}$$
$$\cos(40) = \frac{7}{BC}$$
$$BC = \frac{7}{\cos(\widehat{40})}$$
$$BA \approx 9.1 cm.$$

Exercice** 5:



ABC est un triangle rectangle en A, alors:

$$\cos(\widehat{ABC}) = \frac{BA}{BC}$$

$$\cos(\widehat{ABC}) = \frac{4}{5}$$

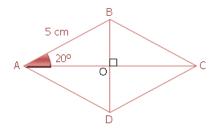
$$\cos(\widehat{ABC}) = 0, 8$$

$$\widehat{ABC} = \cos^{-1}(0, 8)$$

$$\widehat{ABC} \approx 36, 9^{\circ}.$$

Or, la somme des 3 angles d'un triangle vaut 180°, ainsi, $\widehat{ACB} \approx 180 - 90 - 36, 9 = 53, 1^{\circ}.$

6:

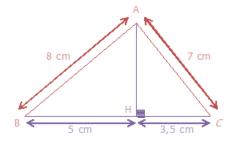


Dans un losange, les diagonales sont perpendiculaires et se coupent en leur milieu, donc le triangle AOB est rectangle en O. Ainsi,

$$\cos(\widehat{OAB}) = \frac{AO}{AB}$$
$$\cos(20) = \frac{AO}{5}$$
$$AO = 5 \times \cos(\widehat{20})$$
$$A0 \approx 4,7 \text{ cm}.$$

Par ailleurs O est le milieu de [AC]. Donc, $AC = 2 \times AO \approx 2 \times 4, 7 = 9, 4 \text{ cm}.$

Exercice** 7:



ABH est un triangle rectangle en H, donc :

$$\cos(\widehat{ABH}) = \frac{BH}{BC}$$

$$\cos(\widehat{ABH}) = \frac{5}{8}$$

$$\cos(\widehat{ABC}) = 0,625$$

$$\widehat{ABH} = \cos^{-1}(0,625)$$

$$\widehat{ABH} \approx 51.3^{\circ}.$$

ACH est un triangle rectangle en H, donc :

$$\cos(\widehat{ACH}) = \frac{CH}{CA}$$

$$\cos(\widehat{ACH}) = \frac{3.5}{7}$$

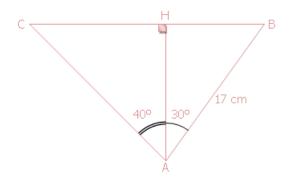
$$\cos(\widehat{ACH}) = 0.5$$

$$\widehat{ACH} = \cos^{-1}(0.5)$$

$$\widehat{ACH} = 60^{\circ}.$$

Or, la somme des 3 angles d'un triangle vaut 180°. Ainsi, $\widehat{BAC} \approx 180 - 60 - 53, 1 = 66, 9^{\circ}.$

Exercice** 8:



1. BAH est un triangle rectangle en H donc :

$$\begin{aligned} \cos(\widehat{BAH}) &= \frac{AH}{AB} \\ \cos(30) &= \frac{AH}{17} \\ AH &= 17 \times \cos(\widehat{30}) \\ AH &\approx 14,7 \ cm. \end{aligned}$$

le théorème de Pythagore :

$$AB^2 = AH^2 + BH^2$$

$$17^2 = 14, 7^2 + BH^2$$

$$289 = 216, 09 + BH^2$$

$$BH^2 = 289 - 216, 09$$

$$BH^2 = 72, 91.$$
 Donc, $BH \approx 9, 5 \ cm$.

3. CAH est un triangle rectangle en H, donc :

$$\cos(\widehat{CAH}) = \frac{CH}{CA}$$

$$\cos(40) = \frac{14,7}{CA}$$

$$CA = \frac{14,7}{\cos(40)}$$

$$\operatorname{donc}, CA \approx 19, 2 \ cm.$$

4. CAH est un triangle rectangle en H, alors d'après le théorème de Pythagore :

$$AC^2 = AH^2 + CH^2$$

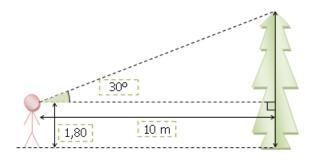
$$19, 2^2 = 14, 7^2 + CH^2$$

$$368, 64 = 216, 09 + CH^2$$

$$CH^2 = 368, 64 - 216, 09$$

$$CH^2 = 152, 55.$$
Donc, $CH \approx 12, 3 \ cm$.

Exercice** 9:



Dans le triangle rectangle, on calcule la longueur x de l'hypoténuse qui correspond à la distance entre la cime de l'arbre et l'il de la personne :

$$\cos(30) = \frac{10}{x}$$

$$x = \frac{10}{\cos(30)}$$

$$\operatorname{donc}, x \approx 11,5cm.$$

Le théorème de Pythagore nous permet de calculer la longueur du troisième côté de ce triangle, c'est à dire la dif-2. BAH est un triangle rectangle en H, alors d'après I férence d'altitude h entre la cime de l'arbre et l'il de la personne:

$$11,5^2 = 10^2 + h^2$$

$$132,25 = 100 + h^2$$

$$h^2 = 132,25 - 100$$

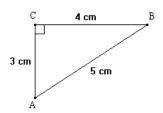
$$h^2 = 32,25$$

$$\mathbf{d'où}: h \approx 5,68 \ m.$$

En ajoutant la taille de la personne, on obtient la hauteur de l'arbre :

$$5,68+1,80=7,48 m.$$

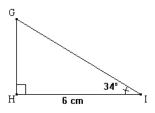
Exercice* 10: Le triangle ABC est rectangle en C.



1	$\sin(\widehat{A}) = \frac{CB}{AB}$	$\cos(\widehat{A}) = \frac{AC}{AB}$	$tan(\widehat{A}) = \frac{CB}{CA}$
1.	$\sin(\widehat{B}) = \frac{CA}{BA}$	$\cos(\widehat{B}) = \frac{CB}{AB}$	$tan(\widehat{B}) = \frac{CA}{CB}$

2. $\widehat{A} \approx 53^{\circ}$ et $\widehat{B} \approx 37^{\circ}$.

Exercice* 11:



GIH est un triangle rectangle en H, alors :

$$tan(\widehat{I}) = \frac{GH}{IH}$$

$$tan(34) = \frac{GH}{6}$$

$$GH = 6 \times tan(34)$$

donc: $GH \approx 4,05 \ cm \approx 41 \ mm$.

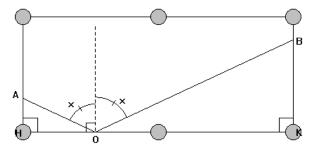
GIH est un triangle rectangle en H, alors :

$$\cos(\widehat{I}) = \frac{IH}{IG}$$
$$\cos(34) = \frac{6}{GI}$$
$$GI = \frac{6}{\cos(34)}$$

donc : $GI \approx 7, 2 \ cm = 72 \ mm$.

Exercice** 12 : Jean est un grand amateur de billard, son coup préféré est la ń bande avant ż : la boule située

en A doit aller frapper la boule placée en B mais auparavant, elle doit touchée la bande du billard. Lorsque la boule n'a pas d'effet, la perpendiculaire en O à la bande est la bissectrice de l'angle \widehat{AOB} . On pose $x=\frac{1}{2}\widehat{AOB}$ et on donne : $AH=0,5\ m,BK=1\ m$ et $HK=2,4\ m$.



1. La perpendiculaire en O à la bande est parallèle aux bords [AH] et [BK]. Alors les angles alternes-internes x et \widehat{HAO} (et x et \widehat{OBK}) sont égaux. Dans le triangle AOH rectangle en H, on a :

$$tan(x) = \frac{OH}{AH} = \frac{OH}{0.5}.$$

Ainsi, OH = 0,5tan(x).

Dans le triangle AOK rectangle en K, on a :

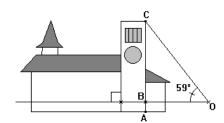
$$tan(x) = \frac{OK}{BK} = \frac{OK}{1}.$$

Ainsi, OK = tan(x).

2. On sait que : HO + OK = 2, 4. Donc :

$$\begin{split} 0,5tan(x) + tan(x) &= 2,4 \\ 1,5tan(x) &= 2,4 \\ tan(x) &= \frac{2,4}{1,5} \\ \mathrm{donc}: x &= tan\left(\frac{2,4}{1,5}\right) \approx 58^\circ. \end{split}$$

Exercice** 13:



Le triangle COB est rectangle en B, alors :

$$tan(\widehat{COB}) = \frac{CB}{OB}$$

$$tan(59) = \frac{CB}{85}$$

$$CB = 85 \times tan(59)$$

donc : $CB \approx 141 m$.

La hauteur de la cathédrale est donc égale

$$141 + 1, 5 = 142, 5 m.$$

Exercice** 14 : Pour savoir si les feux de croisement de sa voiture sont réglés correctement, Pauline éclaire un mur vertical comme l'illustre le dessin suivant :

Pauline réalise le schéma ci-dessous (qui n'est pas à l'échelle) et relève les mesures suivantes :

PA = 0,65 m, AC = QP = 5 m et CK = 0,58 m. P désigne le phare, assimilé à un point.



Pour que l'éclairage d'une voiture soit conforme, les constructeurs déterminent l'inclinaison du faisceau. Cette inclinaison correspond au rapport $\frac{QK}{QP}$. Elle est correcte si ce rapport est compris entre 0,01 et 0,015.

1. Vérifier que les feux de croisement de Pauline sont réglés avec une inclinaison égale à 0,014.

$$QK = QC - CK = 0,65 - 0,58 = 0,07.$$

D'où,
$$\frac{QK}{QP} = \frac{0.07}{5} = 0.014$$
.

2. Donner une mesure de l'angle QPK correspondant à l'inclinaison. On arrondira au dixième de degré.

Dans le triangle QPK rectangle en P,

$$\tan(\widehat{QPK}) = \frac{QK}{QP}$$

$$\tan(\widehat{QPK}) = 0,014$$

D'après la calculatrice, $\widehat{QPK}\approx 1^o$

3. Quelle est la distance AS d'éclairage de ses feux? Arrondir le résultat au mètre près.

$$P$$
 est sur (KS). Q est sur (KC). (PQ) // (SC).

D'après le théorème de Thalès,

$$\frac{KP}{KS} = \frac{KQ}{KC} = \frac{PQ}{SC}$$

$$\frac{KP}{KS} = \frac{0,07}{0,58} = \frac{5}{SC}$$

$$\frac{7}{58} = \frac{5}{SC}$$

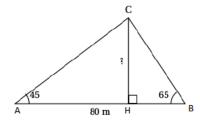
$$7 SC = 58 \times 5$$

$$SC = \frac{290}{7}$$

$$SC \approx 41$$
.

D'où,
$$AS = 5 + 41 = 46 m$$
.

Exercice*** 15:



Posons BH = x. Dans le triangle CBH rectangle en H, on a : $tan(65) = \frac{d}{x}$, donc d = xtan(65). Dans le triangle CHA rectangle en H, on a : $tan(45) = \frac{d}{x^2}$, donc d = (80 - x)tan(45).

 $tan(45)=rac{d}{80-x},$ donc d=(80-x)tan(45). En déduit alors la valeur de x en résolvant l'équation :

$$xtan(65) = (80 - x)tan(45),$$

alors:

$$x = \frac{80 \times tan(45)}{tan(45) + tan(65)} \approx 25, 4 \; m.$$

Par conséquent, $d = 25, 4 \times tan(65) \approx 54, 5 m$.