I. Angles et parallélisme II. Triangles égaux III. Triangles semblables IV. Propriété de Thalès

Triangles semblables

maths-mde.fr

4e

Table des matières

- 1. Angles et parallélisme
- 2 II. Triangles égaux
- 3 III. Triangles semblables
- 4 IV. Propriété de Thalès

a. Angles opposés

Définition

Deux angles sont opposés par le sommet s'ils ont le même sommet et si leurs côtés sont dans le prolongement l'un de l'autre.

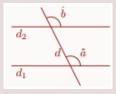
Propriété

Deux angles opposés par le sommet ont même mesure.

b. Angles correspondants

Définition

Soient d_1 et d_2 , deux droites et d, une droite coupant d_1 et d_2 .



Les deux angles \hat{a} et \hat{b} sont dits correspondants.

Propriétés

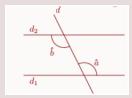
Deux angles correspondants définis par des droites parallèles, ont la même mesure.

Si deux angles correspondants ont la même mesure, alors ils sont définis par deux droites parallèles.

c. Angles alternes-internes

Définition

Soient d_1 et d_2 , deux droites et d, une droite coupant d_1 et d_2 .



Les deux angles \hat{a} et \hat{b} sont dits alternes-internes.

Propriétés

Deux angles alternes-internes définis par des droites parallèles, ont la même mesure.

Si deux angles alternes-internes ont la même mesure, alors ils sont définis par deux droites parallèles.

II. Triangles égaux

Définition

Deux triangles sont **égaux** lorsque leurs côtés sont deux à deux de même longueur.

Propriété 1

Si deux triangles sont **égaux**, alors leurs angles sont deux à deux de même mesure.

Deux triangles égaux sont superposables.

Propriété 2

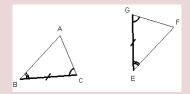
Si deux triangles ont, deux à deux, un angle de même mesure compris entre deux côtés de même longueur, alors ils sont égaux.

$$AB = MN$$
;
 $AC = MP$;
 $\widehat{CAB} = \widehat{PMN}$.

Donc les triangles CAB et PMN sont égaux.

Propriété 3

Si deux triangles ont, deux à deux, un côté de même longueur compris entre deux angles de même mesures, alors ils sont égaux.



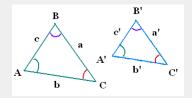
$$BC = GE$$
;
 $\widehat{ABC} = \widehat{GEF}$.
 $\widehat{ACB} = \widehat{FGE}$.

Donc les triangles ABC et FGE sont égaux.

III. Triangles semblables

Définition

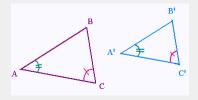
Deux triangles sont **semblables** lorsque leurs angles sont deux à deux de même mesure.



Remarques : Si deux triangles sont égaux, alors ils sont semblables.

Par contre, deux triangles semblables ne sont pas forcément égaux.

Comment démontrer que deux triangles sont semblables?

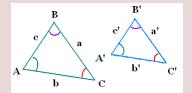


Soient ABC et A'B'C' deux triangles tels que : $\widehat{A} = \widehat{A}'$ et $\widehat{C} = \widehat{C'}$. Comme $\widehat{B} = 180\degree - \widehat{A} - \widehat{C}$ et $\widehat{B'} = 180\degree - \widehat{A'} - \widehat{C'}$, alors $\widehat{B} = \widehat{B'}$. Tous les angles sont deux à deux de même mesure, donc les triangles sont semblables.

Propriété 1

Si deux triangles ABC et A'B'C' sont semblables, alors les longueurs des côtés opposés au angles égaux sont proportionnelles :

$$\frac{A'B'}{AB} = \frac{A'C'}{AC} = \frac{B'C'}{BC} = k.$$

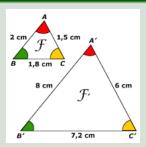


Si k < 1, alors A'B'C' est une réduction de ABC de rapport k. Si k > 1, alors A'B'C' est un agrandissement de ABC de rapport k.

Propriété 2

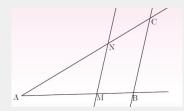
Si les longueurs des côtés de deux triangles sont proportionnelles, alors ces triangles sont semblables.

Exemple



ABC et A'B'C' sont semblables car : $\frac{A'B'}{AB} = \frac{A'C'}{AC} = \frac{B'C'}{BC} = 4$.

IV. Propriété de Thalès



Propriété de Thalès

Le point M est sur le segment [AB] et le point N est sur le segment [AC].

Les droites (MN) et (BC) sont parallèles. On a :

$$\frac{\mathrm{AM}}{\mathrm{AB}} = \frac{\mathrm{AN}}{\mathrm{AC}} = \frac{\mathrm{MN}}{\mathrm{BC}}$$

Propriété de Thalès

Exemple

- On connaît $AM = 5 \,\mathrm{cm}$; $AN = 6 \,\mathrm{cm}$; $AB = 8 \,\mathrm{cm}$.
- On veut calculer AC.

Les droites (MN)et (BC) sont parallèles et les points A, M et B ainsi que les points A, N et C sont alignés donc, d'après la propriété de Thalès, $\frac{\mathrm{AM}}{\mathrm{AB}} = \frac{\mathrm{AN}}{\mathrm{AC}}$.

On remplace par les valeurs que l'on connaît : $\frac{5}{8} = \frac{6}{AC}$.

On en déduit que $AC = \frac{8 \times 6}{5} = 9.6 \,\mathrm{cm}.$

