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Modes de générations

Il existe deux façons de définir une suite :
• par une relation un = f (n), ou relation explicite ;
• par une relation un+1 = f (un), ou relation de

récurrence.

Exemple 1 : (un = f (n))
un = 50 + 1, 5n
u0 = 50 + 1, 5 × 0 = 50 u1 = 50 + 1, 5 × 1 = 51, 5
u2 = 50 + 1, 5 × 2 = 53.

Exemple 2 : par récurrence (un+1 = f (un))
u0 = 1 et un+1 = 2un + 1
u0 = 1
u1 = 2 × u0 + 1 = 2 × 1 + 1 = 3
u2 = 2 × u1 + 1 = 2 × 3 + 1 = 7
u3 = 2 × u2 + 1 = 2 × 7 + 1 = 15.
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Rappels : Définitions et formules

Si (un) est une suite arithmétique de raison r, alors :
• un+1 = un + r ;
• un = u0 + nr ;
• un = up + (n − p)r , pour tout entier naturel p tel que

p 6 n.

Si (un) est une suite géométrique de raison q, alors :
• un+1 = q × un ;
• un = u0 × qn ;
• un = up × qn−p, pour tout entier naturel p tel que

p 6 n.
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Sommes de termes successifs
Suite arithmétique

• 1 + 2 + · · ·+ n =
n(n + 1)

2
.

• u0 + u1 + u2 + · · ·+ un = (n + 1)× u0 + un
2

.

• Nb. de termes × (premier terme + dernier terme)
2

.

Suite géométrique

• 1 + q + q2 + · · ·+ qn =
1 − qn+1

1 − q
.

• u0 + u1 + u2 + · · ·+ un = u0 ×
1 − qn+1

1 − q
.

• premier terme × 1 − qNombre de termes

1 − q
.
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Exemple d’une suite auxiliaire
On considère les deux suites (un) et (vn) définies par :
vn = un + 10 et un =

1
2

un−1 − 5.

(vn) est une suite géométrique de raison 1
2

. En effet,

vn+1 = un+1 + 10 or un+1 =
1
2

un − 5

=

(
1
2

un − 5
)
+ 10

=
1
2

un + 5 or vn = un + 10 donc un = vn − 10

=
1
2
(vn − 10) + 5

=
1
2

vn − 1
2
× 10 + 5

=
1
2

vn − 5 + 5

=
1
2

vn .
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Raisonnement par récurrence

Méthode
On veut démontrer une propriété P(n).

• Initialisation : on justifie que
la propriété P(0) est vraie

• Hérédité : on démontre que
si P(n) est vraie, alors P(n + 1) est vraie

• Conclusion : on rappelle l’on a démontré que P(0)
est vraie
et que si P(n) est vraie, alors P(n + 1) est vraie.
On en conclut que pour tout entier naturel n la
propriété P(n) est vraie.
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Exemple
Démontrer par récurrence la propriété P(n) : 2n > n,
pour tout entier naturel non nul.

• Initialisation.
21 = 2 > 1. La propriété est donc vraie pour n = 1.

• Hérédité.
Supposons que pour un certain entier k fixé supérieur
ou égal à 1, P(k) est vraie, c’est-à-dire que 2k > k
(HR) et démontrons que 2k+1 > k + 1.

2k > k d’après (H.R.)
2 × 2k > 2 × k

2k+1 > k + 1 car, k > 1.

Ainsi, la propriété P(n) est héréditaire.
• Conclusion. D’après le principe de récurrence, on en

déduit que P(n) est vraie pour tout entier naturel
n > 0.
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Sens de variation

Définitions
• La suite (un) est croissante si pour tout entier n,

un+1 > un .
• La suite (un) décroissante si pour tout entier n,

un+1 6 un .

Méthodes possibles
• Démontrer que un+1 > un ou que un+1 6 un .
• Étudier le signe de un+1 − un .
• Si la suite est définie sous la forme un = f (n), étudier

le sens de variation de la fonction f .
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Suites arithmétiques et géométriques

Propriété
• Une suite arithmétique de raison positive est

croissante.
• Une suite arithmétique de raison négative est

décroissante.

Propriété
• Si q < 0 la suite (qn) n’est ni croissante, ni

décroissante.
• Si q = 0 la suite (qn) est constante.
• Si 0 < q < 1 la suite (qn) est décroissante.
• Si q = 1 la suite (qn) est constante.
• Si q > 1 la suite (qn) est croissante.
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Définition
Dire qu’une suite (un) est majorée signifie qu’il existe un
nombre réel M tel que tous les termes de cette suite sont
inférieurs ou égaux à M : un 6 M .

Définition
Dire qu’une suite (un) est minorée signifie qu’il existe un
nombre réel m tel que tous les termes de cette suite sont
supérieurs ou égaux à m : un > m.

Définition
Dire qu’une suite est bornée signifie que cette suite est
majorée et minorée.
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Définition
On dit que la suite (un) converge vers un réel ℓ si un se
rapproche de plus en plus de ℓ quand n tend vers +∞.
On écrit alors : lim

n→+∞
un = ℓ.

Définition
• On dit que la limite de (un) est +∞ si un prend des

valeurs de plus en plus grandes. On écrira alors :
lim

n→+∞
un = +∞.

• On dit que la limite de (un) est −∞ si la suite (−un)
tend vers +∞. On écrira alors : lim

n→+∞
un = −∞.

Exemple
La suite (un) définie pour tout entier naturel non nul n
par un =

1
n

converge vers 0 car plus n prend de grandes

valeurs positives, plus 1
n

se rapproche de 0.
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Convergente, divergente

Vocabulaire
• Une suite convergente est une suite qui a une limite

finie ℓ.
• Une suite divergente est une suite qui n’est pas

convergente, c’est à dire
• une suite qui tend vers l’infini
• ou une suite qui n’a pas de limite.

Propriété : Suites de références
• Les suites (n), (n2), (n3), (

√
n),

ont pour limite +∞.

• Les suites
(

1
n

)
,
(

1
n2

)
,
(

1
n3

)
,
(

1√
n

)
,

ont pour limite 0.
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Propriétés de convergence d’une suite monotone
• Toute suite croissante et majorée converge.
• Toute suite croissante non majorée diverge vers +∞
• Toute suite décroissante et minorée converge.
• Toute suite décroissante non majorée diverge vers
−∞

• Toute suite monotone et bornée converge.

Exemple
On considère la suite (un) définie pour tout entier naturel n non nul par un =

n − 1
n + 4

.

1 Montrer que (un) est majorée par 1.

Pour tout n ∈ N, on a : un − 1 =
n − 1
n + 4

− 1 =
n − 1 − (n + 4)

n + 4
=

−5
n + 4

. Ainsi,

un − 1 < 0 soit un < 1. Autrement dit, (un) est majorée par 1.

2 Montrer que (un) est croissante.
Pour tout n ∈ N, on a :

un+1 − un =
n

n + 5
−

n − 1
n + 4

=
n(n + 4) − (n − 1)(n + 5)

(n + 5)(n + 4)
=

5
(n + 5)(n + 4)

.

Ainsi, un+1 − un > 0. Autrement dit, (un) est strictement croissante.

3 En déduire que (un) converge.
La suite (un) est strictement croissante et majorée par 1. Donc (un) converge.
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Théorème de comparaison
Soient (un) et (vn) deux suites, et soit n0 un entier naturel.

• Si, pour tout n > n0, vn > un avec lim
n→+∞

un = +∞,
alors lim

n→+∞
vn = +∞.

• Si, pour n > n0, vn 6 un avec lim
n→+∞

un = −∞, alors
lim

n→+∞
vn = −∞.

Exemples
1 Soit (un) une suite telle que pour tout entier naturel

n, un > n. Alors, d’après le théorème de
comparaison, lim

n→+∞
un = +∞.

2 Soit (un) une suite telle que pour tout entier naturel
n, un 6 −n2. Alors, lim

n→+∞
un = −∞.
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Théorème des gendarmes
Soient (un), (vn) et (wn) trois suites, et ℓ est un réel. On
suppose que :
• il existe un entier naturel n0 tel que pour tout

n > n0, vn 6 un 6 wn ;
• lim

n→+∞
vn = lim

n→+∞
wn = ℓ.

Alors la suite (un) converge et lim
n→+∞

un = ℓ.

Exemple
Soit (un) la suite définie sur N∗ par un = 3 +

(−1)n

n
.

Déterminer la limite de la suite (un).
Pour tout n ∈ N∗ , −1 6 (−1)n 6 1.

Donc, −1
n

6 (−1)n

n
6 1

n
.

Soit, −1
n

+ 3 6 (−1)n

n
+ 3 6 1

n
+ 3.

Or, lim
n→+∞

−1
n

+ 3 = lim
n→+∞

1
n
+ 3 = 3, donc d’après le théorème

des gendarmes lim
n→+∞

un = 3.
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Limite d’une somme

• ℓ et ℓ′ sont deux nombres réels.
• FI (forme indéterminée) : on ne peut pas conclure.

lim
n→+∞

un ℓ ℓ ℓ +∞ −∞ +∞

lim
n→+∞

vn ℓ′ +∞ −∞ +∞ −∞ −∞

lim
n→+∞

(un + vn) ℓ+ ℓ′ +∞ −∞ +∞ −∞ FI
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Limite d’un produit ou d’un quotient

• ℓ et ℓ′ sont deux nombres réels.
• Pour le signe, appliquer la règle des signes.
• FI (forme indéterminée) : on ne peut pas conclure.

lim
n→+∞

un ℓ ℓ ̸= 0 ∞ 0

lim
n→+∞

vn ℓ′ ∞ ∞ ∞

lim
n→+∞

(un × vn) ℓ× ℓ′ ∞ ∞ FI

lim
n→+∞

un ℓ ℓ ̸= 0 ℓ 0 ∞ ∞ ∞

lim
n→+∞

vn ℓ′ ̸= 0 0 ∞ 0 ℓ′ ̸= 0 0 ∞

lim
n→+∞

(
un
vn

)
ℓ

ℓ′
∞ 0 FI ∞ ∞ FI
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