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Suites

Modes de générations

ok Gl Il existe deux fagons de définir une suite :

générations

® par une relation u, = f(n), ou relation explicite ;

® par une relation u,4+1 = f(uy,), ou relation de

récurrence.
Exemple 1 : (u, = f(n))
Uy, =004 1,5n
uy =50+ 1,5 x 0 =50 w =50+1,5x1=51,5

upg =504 1,5 x 2 =53.

Exemple 2 : par récurrence (u,1 = f(uy))
=1 et U1 =2u,+1

up =1

m=2xu+1=2x1+1=3

U =2Xu+1=2x3+1=7
up=2xXu+1=2x7+1=15.




Suites Rappels : Définitions et formules

Si (u,) est une suite arithmétique de raison r, alors :

imétiques [} un+1 = un + 'r’;

et géométriques

® up = ug+ nr;
® u, = u,+ (n— p)r, pour tout entier naturel p tel que

.

P < n.

Si (u,) est une suite géométrique de raison ¢, alors :
® Uptr1 = ¢ X Up;

® u, =uy X q";
® u, = u, X ¢""P, pour tout entier naturel p tel que

p < n.

\.
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Sommes de termes successifs

Suite arithmétique

T'erminale Sp¢

n(n+1
Suites O 1+2++n:¥
2
+ u
° W+u1+u2++un:(n+l)x Up . n
o Nb. de termes X (premier terme + dernier terme)

2

Suite géométrique

¢ l4qg+@+---+q"=

N

® up+ U+ Ut -+ Uy = Up X

Nombre de termes

1—g¢q

® premier terme X

1—g¢q

.
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et géométriques

Exemple d’une suite auxiliaire

On considére les deux suites (uy,) et (v,) définies par :

Up = Up + 10 et unziun,l—&

1
(vp) est une suite géométrique de raison —. En effet,
Unt+1 = Up41 + 10 or Up41 = iun -5

1
= <§un—5> -+ 10

=§un+5 or v, = u, + 10 donc u, = v, — 10

1
= S (0 —10) +5
1 1
:%’l}n—§x10+5
1
= —Up.
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Raisonnement par récurrence
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Méthode

On veut démontrer une propriété P(n).

Raisonnement e Initialisation : on justifie que

par récurrence

la propriété P(0) est vraie

® Hérédité : on démontre que
si P(n) est vraie, alors P(n + 1) est vraie

¢ Conclusion : on rappelle 'on a démontré que P(0)
est vraie
et que si P(n) est vraie, alors P(n + 1) est vraie.
On en conclut que pour tout entier naturel n la
propriété P(n) est vraie.




Suites Exemple

Perminale Sp Démontrer par récurrence la propriété P(n) : 2" > n,
pour tout entier naturel non nul.

® [nitialisation.
2! = 2 > 1. La propriété est donc vraie pour n = 1.

Raisonnement ® Hérédité.

PRI FESIITENGE Supposons que pour un certain entier k fixé supérieur
ou égal a 1, P(k) est vraie, c’est-a-dire que 2% > k
(HR) et démontrons que 2¥+1 > & 4 1.

28 >k d’apres (H.R.)
2x 28> 92k
P LA R | car, k> 1.

Ainsi, la propriété P(n) est héréditaire.

® (Conclusion. D’apres le principe de récurrence, on en
déduit que P(n) est vraie pour tout entier naturel
n > 0.
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Sens de variation

T'erminale Sp¢

® La suite (u,) est croissante si pour tout entier n,
Upt1 2 Up.

® La suite (uy) décroissante si pour tout entier n,
Upt1 S Up.

Méthodes possibles
® Démontrer que Up41 = Uy OU qUE Upt] < Up.
e Ltudier le signe de up+1 — Up.

¢ Si la suite est définie sous la forme u,, = f(n), étudier
le sens de variation de la fonction f.
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Suites arithmétiques et géométriques
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Propriété

® Une suite arithmétique de raison positive est
croissante.

® Une suite arithmétique de raison négative est
décroissante.

® Si ¢ <0 la suite (¢") n’est ni croissante, ni
décroissante.

Sens de
variation

Si ¢ = 0 la suite (¢") est constante.

Si0 < ¢ <1 lasuite (¢") est décroissante.

Si ¢ =1 la suite (¢™) est constante.

Si ¢ > 1 la suite (¢™) est croissante.
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Suite majorée,

minorée, bornée

Définition

Dire qu’une suite (u,) est majorée signifie qu'il existe un
nombre réel M tel que tous les termes de cette suite sont
inférieurs ou égaux a M : u, < M.

v

Définition

Dire qu’une suite (u,) est minorée signifie qu'’il existe un
nombre réel m tel que tous les termes de cette suite sont
supérieurs ou égaux a m : u, = m.

Définition
Dire qu’une suite est bornée signifie que cette suite est
majorée et minorée.
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Limite d’une
suite

Définition
On dit que la suite (u,) converge vers un réel ¢ si u, se
rapproche de plus en plus de £ quand n tend vers +oo.

On écrit alors : lim u, = /.
n—+4o00

Définition
® On dit que la limite de (u,) est +00 si u, prend des
valeurs de plus en plus grandes. On écrira alors :
lim u, = +oo.

n—+o00
¢ On dit que la limite de (u,) est —oo si la suite (—uy,)
tend vers +o0o. On écrira alors : lim w, = —co.
n—-+oo
Exemple

La suite (u,,) définie pour tout entier naturel non nul n
1

par u, = — converge vers 0 car plus n prend de grandes
n

1
valeurs positives, plus — se rapproche de 0.
n
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Convergente, divergente
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Vocabulaire
® Une suite convergente est une suite qui a une limite

finie /.

® Une suite divergente est une suite qui n’est pas
convergente, c’est a dire

® une suite qui tend vers 'infini

® ou une suite qui n’a pas de limite. )

Propriété : Suites de références
o Les suites (n), (n2), (n?), (v7),
ont pour limite +oo.

e (1) (1) (2) ()

ont pour limite 0.

Limite d’une
suite




B Propriétés de convergence d’une suite monotone

® Toute suite croissante et majorée converge.
® Toute suite croissante non majorée diverge vers 400
® Toute suite décroissante et minorée converge.

® Toute suite décroissante non majorée diverge vers

—0
q ,
® Toute suite monotone et bornée converge.
v
Exemple
n—1
On considére la suite (uy) définie pour tout entier naturel n non nul par u, = T
n
0 Montrer que (up) est majorée par 1.
n—1 n—1—(n+4) -5
Pour tout n € Nyona: u, — 1= -1== = = . Ainsi,
n+4 n+4 n+4
S up — 1 < 0 soit up < 1. Autrement dit, (uy,) est majorée par 1.
monotone .
9 Montrer que (un) est croissante.
Pour tout n € N, on a :
n n—1 n(n+4) — (n—1)(n+5) 5
Upt1 — Un = -— = = .
nt5 ntd (n+5)(n+4) (n+5)(n+4)

Ainsi, up41 — up > 0. Autrement dit, (uy,) est strictement croissante.

@ En déduire que (up) converge.
La suite (uy) est strictement croissante et majorée par 1. Donc (up) converge.
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Théoréme de comparaison
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Soient (uy) et (vy) deux suites, et soit ny un entier naturel.

® Si, pour tout n > ngy, v, > u, avec lim wu, = 400,

n——+0o00
alors lim wv, = +o00.
n—-+00
e Si, pour n > ng, v, < U, avec lim wu, = —oo, alors
n—-+oo
lim v, = —o0.
n——+00
V.
Exemples

® Soit (uy,) une suite telle que pour tout entier naturel
n, up = n. Alors, d’apres le théoréme de

comparaison, lim wu, = +oc.
n—-+o0o

® Soit (u,) une suite telle que pour tout entier naturel

n, Up, < _n2. AlOl“S, 11m Uy = —OQO.
n—-+00
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Théoréme des

gendarmes

Théoréme des gendarmes

Soient (uy,), (v,) et (wy,) trois suites, et £ est un réel. On
suppose que :
® i existe un entier naturel ny tel que pour tout
nZng, Up < Up < Wn;

e lim wv,= lim w,=>~¢,
n——+o0o n—-+o0o

Alors la suite (uy,) converge et lim wu, = /.
n——+00

Exemple

(1"

Soit (uy,) la suite définie sur N* par u, =3 +

Déterminer la limite de la suite (uy,).
Pour tout n € N* | —1 < (-1)" < 1.
-1 -nH" 1
Donc,—é( ) < —.
n n n
(=n" 1
+3< —+3.
n n

-1
Soit, — +3 <
n

-1 1
Or, lim — +3= lim — 43 =3, donc d’apres le théoreme
n—+oo n n——+oco n
des gendarmes lim wu, = 3.
n——+oo
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Limite d’une somme

® (et ¢ sont deux nombres réels.

e FI (forme indéterminée) : on ne peut pas conclure.

n—-+0o00

lim u, 12 V4 l 400 | —0 | +0
n—-+oo
lim o, 4 +00 | —00 | 400 | —00 | —00
n——+00
lim (u, +v,) | £+ | +00 | —00 | 400 | —c0 | FI

Opérations sur
les limites




Suites Limite d’un produit ou d’un quotient

e (et /' sont deux nombres réels.
® Pour le signe, appliquer la regle des signes.

® FI (forme indéterminée) : on ne peut pas conclure.

lim w, 14 L#£0|oc0| O

n——+00
- !

lim v, J4 o0 oo | 00

n——00

: /
ngrfoo(un X vp) | €% 0 oo | oo | FI

lm v, 40| 0 |oo| 0 |F#0]0

g/
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