Série d'exercices

Classe: Seconde

Corrigés

Lycée : Evariste Galois

Résoudre les inéquations suivantes :

- a. 5x 3 > 6.
- b. $3x + 2 \le -7$.
- c. -5x + 10 < 12.
- d. $-6x + 11 \ge 7$.

Résoudre les inéquations suivantes :

- a. x 1 < 5 5x.
- b. $4x + 3 \le x 2$.
- c. -x + 40 > 10 + x.
- d. $-6x + 11 \ge 4x$.

Pour transporter des enseignes, une société souhaite comparer les tarifs de deux entreprises : L'entreprise « Vitlivré » propose une somme de 3,20 € par kilomètre parcouru, tandis que l'entreprise « Rapido » propose un forfait de 180 \in puis une somme de 2 \in par kilomètre parcouru.

- 1. Quelle entreprise faut-il choisir pour un transport de 100 kilomètres?
- 2. À partir de quel kilométrage l'entreprise « Rapido » est-elle la plus intéressante?

Compléter les encadrements suivants :

- 1. si $1 \leqslant x \leqslant 3$, alors
 - $\leq -2x \leq$ donc $\leq -2x + 1 \leq$
- 2. $\sin -4 < x < -\frac{1}{2}$, alors < 3x < donc
- 3. si $-2 < x < \sqrt{2}$, alors
 - < -x < donc < 2 - x <
- 4. si $-5 \leqslant x \leqslant 2$, alors
- 6. si $\frac{3}{2} \leqslant x \leqslant 7$, alors $\leqslant \frac{1}{x} \leqslant \qquad \text{donc} \qquad \leqslant \frac{2}{x} \leqslant$
- 7. si $-6 \leqslant 12x \leqslant 2$, alors $\leq x \leq$
- 8. si -4 < 3x 1 < 8, alors < 3x < donc < x <
- 9. $\operatorname{si} -\frac{3}{2} \leqslant 1 2x \leqslant \frac{5}{4}$, alors $\leqslant -2x \leqslant \operatorname{donc} \leqslant x \leqslant$
- 10. si $-10 \le 7 x \le 1$, alors $\leq -x \leq$ donc $\leq x \leq$

Un cinéma propose deux tarifs.

Tarif $1:7.50 \in \text{la place}$.

Tarif $2:5,25 \in la$ place sur présentation d'une carte d'abonnement de $27 \in$ valable un an.

On désigne par x le nombre de places achetées au cours d'une année. On note P_1 le prix payé avec le tarif 1 et P_2 le prix payé avec le tarif 2.

- 1. Exprimer P_1 et P_2 en fonction de x.
- 2. À partir de combien de places a-t-on intérêt à s'abonner?

Un club de squash propose trois tarifs à ses adhérents :

Tarif $A : 8 \in \text{par séance};$

Tarif B : achat d'une carte privilège de 40€ pour l'année donnant droit à un tarif de 5€ par séance;

Tarif C : achat d'une carte confort de 160€ valable une année et donnant droit à un accès illimité à la salle de squash.

Mélissa, nouvelle adhérente au club, étudie les différents tarifs.

1. Recopier et compléter le tableau suivant :

Nombre de séances	10	18	25
Tarif A			
Tarif B			
Tarif C			

2. Quel est le tarif le plus avantageux si Mélissa désire faire 10 séances?

On appelle x le nombre de séances.

- 3. Exprimer en fonction de x, la dépense totale lorsque Mélissa fait x séances avec le tarif A.
- 4. Exprimer en fonction de x, la dépense totale lorsque Mélissa fait x séances avec le tarif B.
- 5. Exprimer en fonction de x, la dépense totale lorsque Mélissa fait x séances avec le tarif C.
- 6. A partir de combien de séances, le tarif B est-il plus avantageux que le tarif A?
- 7. A partir de combien de séances, le tarif C est-il plus avantageux que le tarif B?

On considère deux réels x et y tels que -4 < x < -1et -3 < y < -2.

Déterminer un encadrement de xy et de $\frac{x}{y}$.

Écrire sous forme d'intervalles les ensembles de réels définis par :

a)
$$3 \le x \le 4$$

b)
$$4 < x < 7$$

c)
$$-2 < x \le 5$$

d)
$$-\frac{1}{4} \leqslant x < \frac{1}{2}$$

f) $x \leqslant 2$

e)
$$\sqrt{2} < x \le \sqrt{3}$$

f)
$$x \leqslant 2$$

$$g) x \geqslant -\frac{1}{4}$$

h)
$$x < \sqrt{3}$$
.

L'épaisseur d'un écran e doit être comprise :

- dans l'intervalle [0,67; 0,69], selon la norme européenne;
- dans l'intervalle [0,68; 0,72], selon la norme américaine:

Un fabricant désire respecter les deux normes. Dans quel intervalle doit se situer l'épaisseur des écrans qu'il fabrique?

Déterminer les intersections et réunions d'intervalles suivantes:

a)
$$]-3;4] \cap [2;7[$$

b)
$$\left] -\frac{1}{2}; 8 \right[\cap]4; 6]$$

c)
$$]-2;4] \cap [4;6[$$

d)
$$[-8; 4[\bigcap]10; 20]$$

e)
$$]2;5] \cap [3;6]$$

f)
$$[-3;3] \cap]\frac{1}{2}; 5[\cap [-1;2[$$

g)
$$\left] -\frac{7}{4}; +\infty \right[\cap] -\infty;$$

$$\mathbf{g})\ \left]-\frac{7}{4};+\infty\right[\bigcap]-\infty;1[\quad \mathbf{h})\ \left[\frac{3}{2};+\infty\right[\bigcap]-6;\frac{1}{3}\right[$$

i)
$$]5;10] \cup [3;6]$$

j)
$$[2; 6] \bigcup [4; +\infty[$$

1) [8; 12]
$$\bigcup$$
]7; 8[.

a et b étant deux réels strictement positifs.

1. Calculer

$$\left[\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{a+b}\right]\times\left[\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{a+b}\right].$$

En déduire que ce produit est strictement positif.

2. En déduire que $(\sqrt{a} + \sqrt{b}) - \sqrt{a+b}$ est toujours strictement positif et que, pour tous réels a et b strictement positifs, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

Soit f la fonction définie sur \mathbb{R} par

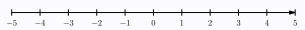
$$f(x) = |2x - 4| - |3x + 1|.$$

Calculer f(0), f(-2) et f(8).

Déterminer la valeur absolue des réels suivants :
$$-\sqrt{2}$$
 ; $-\frac{1}{3}$; $\frac{3}{4}$; $4-\sqrt{2}$; $\frac{1}{2}-\sqrt{3}$;

$$2-\frac{\pi}{4}$$
; $-\frac{2\pi}{3}$; $\sqrt{2}-\sqrt{3}$.

1. Placer sur l'axe ci-dessous les points d'abscisse xtels que |x| = 5.



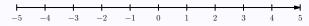
2. Placer sur l'axe ci-dessous les points d'abscisse x tels que |x-3|=1.

3. Placer sur l'axe ci-dessous les points d'abscisse xtels que |x+1|=3.

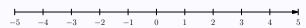
4. Hachurer sur l'axe ci-dessous les points d'abscisse x tels que |x| < 3.



5. Hachurer sur l'axe ci-dessous les points d'abscisse x tels que $|x-2| \leq 1$.



6. Hachurer sur l'axe ci-dessous les points d'abscisse x tels que $|x+1| \ge 2$.



On considère deux réels x et y tels que $1 \leqslant x \leqslant 3$ et $\frac{1}{2} \leqslant y \leqslant \frac{3}{2}$

- 1. Déterminer un encadrement de x + y, xy, x + 2y
- 2. Déterminer un encadrement de -y. En déduire celui de x-y.
- 3. Déterminer un encadrement de $\frac{1}{u}$. En déduire celui de $\frac{x}{u}$.

On considère deux réels x et y tels que -2 < x < -1et 3 < y < 6.

- 1. Déterminer un encadrement de -x. En déduire celui de -xy, puis de xy.
- 2. Déterminer un encadrement de $\frac{1}{y}$. En déduire celui $\det \frac{-x}{y}$, puis $\det \frac{x}{y}$.