Exercice 1: (8 points)

Les sept questions sont indépendantes.

1 On considère la fonction f définie par : $f(x) = \frac{2x}{x^2 + 1}$.

On sait que pour tout $x \in \mathbb{R}$, $x^2 \ge 0$. Ainsi, $x^2 + 1 \ge 1$. Autrement dit, pour tout $x \in \mathbb{R}$, $x^2 + 1 \ne 0$. On déduit alors que le domaine de définition : $D_f = \mathbb{R} =]-\infty; +\infty[$.

Or, \mathbb{R} est symétrique par rapport à 0, car pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$.

Par ailleurs, $f(-x) = \frac{2 \times (-x)}{(-x)^2 + 1} = \frac{-2x}{x^2 + 1} = -f(x)$. Donc, la fonction f est impaire.

2 On considère la fonction g définie par : $g(x) = (x-1)^2 + (x+1)^2$.

Pour tout $x \in \mathbb{R}$, on peut calculer une image par la fonction g. Ainsi, le domaine de définition de g est donné par : $D_g = \mathbb{R} =]-\infty; +\infty[$.

Or, \mathbb{R} est symétrique par rapport à 0, car pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$.

Par ailleurs, $g(-x) = (-x-1)^2 + (-x+1)^2 = [-(x+1)]^2 + [-(x-1)]^2 = (x+1)^2 + (x-1)^2 = g(x)$.

Donc, la fonction g est paire.

3 Si $x \in \left[0; \frac{1}{3}\right]$, alors $0 \le x \le \frac{1}{3}$. Et donc, $3 \times 0 + 1 \le 3x + 1 \le 3 \times \frac{1}{3} + 1$.

Soit, $1 \leqslant 3x + 1 \leqslant 2$. Ce qui implique que $\frac{1}{2} \leqslant \frac{1}{3x + 1} \leqslant 1$.

Par conséquent, $1 \leqslant \frac{2}{3x+1} \leqslant 2$. Autrement dit, $\frac{2}{3x+1} \in [1;2]$.

 $\boxed{\mathbf{4}}$ -1 et 1 sont les deux valeurs interdites, car $x-1\neq 0$ et $x+1\neq 0$. Sous ces deux conditions,

$$\frac{2}{x-1} = \frac{3}{x+1} \Leftrightarrow 2(x+1) = 3(x-1)$$

$$\Leftrightarrow 2x+2 = 3x-3$$

$$\Leftrightarrow 2+3 = 3x-2x$$

$$\Leftrightarrow 4 = x.$$

Ainsi, $S = \{5\}.$

5 Résolvons dans \mathbb{R} l'inéquation suivante : $3(2x-1) \geqslant 5x+1$.

$$3(2x-1) \geqslant 5x+1 \Leftrightarrow 6x-3 \geqslant 5x+1$$

 $\Leftrightarrow 6x-5x \geqslant 1+3$
 $\Leftrightarrow x \geqslant 4.$

Ainsi, $S = [4; +\infty[$.

- **6** $I \cap J = [-2; 1] \cap [-\infty; 3] = [-2; 1]$ et $I \cup J = [-2; 1] \cup [-\infty; 3] = [-\infty; 3]$.
- Soient [AC] et [BD] deux diamètres d'un cercle \mathscr{C} . Le quadrilatère ABCD est un parallélogramme, car ses deux diagonales [AC] et [BD] se coupent en leur milieu O, le centre du cercle \mathscr{C} .

Par conséquent, selon la règle du parallélogramme $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AC}$.

Sinon, on peut raisonner autrement : ABCD est un parallélogramme ce qui entraı̂ne que $\overrightarrow{AB} = \overrightarrow{DC}$. Ainsi, $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DC}$.

Et en utilisant la relation de Chasles, on obtient : $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AC}$.

Exercice 2: (7 points)

On considère la fonction h définie par :

$$h(x) = 2 + \frac{3}{x - 1}.$$

- 1 est une valeur interdite, car $x-1 \neq 0$. Ainsi, l'ensemble de définition de la fonction h est donné par : $D_h = \mathbb{R} 1 =]-\infty; 1[\cup]1; +\infty[$.
- 2 Pour tout $x \in D_h$, $h(x) = 2 + \frac{3}{x-1} = \frac{2(x-1)}{x-1} + \frac{3}{x-1} = \frac{2(x-1)+3}{x-1} = \frac{2x-2+3}{x-1} = \frac{2x+1}{x-1}$.
- $\boxed{\mathbf{3}}$ 0 est l'image de $-\frac{1}{2}$ par la fonction h. En effet,

$$f\left(-\frac{1}{2}\right) = \frac{2 \times \frac{-1}{2} + 1}{-\frac{1}{2} - 1} = \frac{-1 + 1}{-\frac{1}{2} - 1} = 0.$$

 $\boxed{\mathbf{4}}$ -1 est l'image de 0 par la fonction h. En effet,

$$f(0) = \frac{2 \times 0 + 1}{0 - 1} = -1.$$

 $\boxed{\mathbf{5}}$ $5+3\sqrt{2}$ est l'image de $\sqrt{2}$ par la fonction h. En effet,

$$f\left(\sqrt{2}\right) = \frac{2 \times \sqrt{2} + 1}{\sqrt{2} - 1} = \frac{(2\sqrt{2} + 1)(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{2\sqrt{2}^2 + 3\sqrt{2} + 1}{\sqrt{2}^2 - 1^2} = 5 + 3\sqrt{2}.$$

6 Déterminer les antécédents de 1 par la fonction h, revient à résoudre l'équation h(x) = 1. Pour tout $x \in D_h$,

$$h(x) = 1 \Leftrightarrow \frac{2x+1}{x-1} = 1$$
$$\Leftrightarrow 2x+1 = x-1$$
$$\Leftrightarrow 2x-x = -1-1$$
$$\Leftrightarrow x = -2.$$

Ainsi, -2 est l'antécédent de 1 par la fonction h.

Toéterminer les antécédents de 2 par la fonction h, revient à résoudre l'équation h(x) = 2. Pour tout $x \in D_h$,

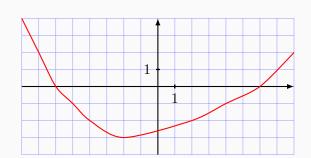
$$h(x) = 2 \Leftrightarrow 2 + \frac{3}{x - 1} = 2$$
$$\Leftrightarrow \frac{3}{x - 1} = 0.$$

C'est absurde! Ainsi, 2 n'admet pas d'antécédent par la fonction h.

Exercice 3: (2 points)

Ci-après le tableau de variations correspondant à la représentation graphique ci-dessous.

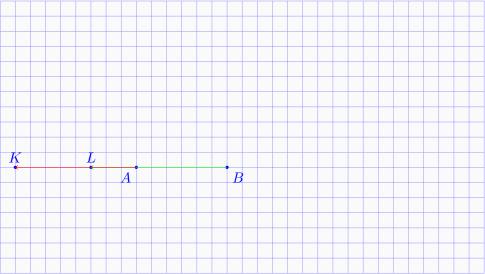
x	-8 -2 8
f(x)	42



Exercice 4: (3 points)

Soient A et B deux points du plan distants de 6 cm.

 $\boxed{ \mathbf{1} }$ $\boxed{ \mathbf{a} }$ Le point L est tel que $\overrightarrow{BL} = \frac{3}{2}\overrightarrow{BA}$. Voir la figure.



- **(b)** Le point K est tel que $\overrightarrow{AK} = -\frac{4}{3}\overrightarrow{AB}$. Voir la figure.
- - **b** On sait que la norme du vecteur \overrightarrow{BA} est égale à 6. Ainsi, la norme du vecteur \overrightarrow{LK} est égale à 5 cm. En effet, $6 \times \frac{5}{6} = 5$.