Exercice 1:(7 points)

Les six questions sont indépendantes.

- 1 Factoriser $x^2 + 2\sqrt{2}x + 2$.
- **2** Développer et réduire : $(x + \sqrt{2})^2 (x \sqrt{2})^2$.
- 3 Si $x \in [-1; 1]$, alors $\frac{-2x+1}{3} \in [\cdots; \cdots]$.
- $\boxed{\mathbf{4}}$ Résoudre dans \mathbb{R} l'équation suivante : $\frac{2}{x-1} = \frac{3}{x+1}$.
- **5** Résoudre dans \mathbb{R} l'inéquation suivante : $6x 1 \leq 2(x + 1)$.
- 6 Soit un parallélogramme ABCD. Compléter les égalités suivantes.
 - $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{A...}$
 - $\overrightarrow{\mathbf{b}}) \overrightarrow{AB} + \overrightarrow{CD} = \dots$

- $\overrightarrow{\mathbf{a}} \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{\dots B}$ $\overrightarrow{\mathbf{d}} \overrightarrow{DC} \overrightarrow{AD} = \overrightarrow{D \dots}$

Exercice 2: (2 points)

Déterminer les intersections et réunions d'intervalles suivantes :

$$g)\ \left]-\frac{7}{4};+\infty\right[\bigcap]-\infty;1[$$

h)
$$\left[\frac{3}{2}; +\infty\right[\bigcap\right] -6; \frac{1}{3}\left[$$

i)]5; 10]
$$\bigcup$$
 [3; 6]

j)
$$[2; 6] \bigcup [4; +\infty[$$
.

Exercice 3: (3 points)

a et b étant deux réels strictement positifs.

1 Calculer,

$$\left[\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{a+b}\right]\times\left[\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{a+b}\right].$$

En déduire que ce produit est strictement positif.

2 En déduire que $(\sqrt{a} + \sqrt{b}) - \sqrt{a+b}$ est toujours strictement positif et que, pour tous réels a et b strictement positifs, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

Exercice 4: (3 points)

Un parc de loisir propose deux formules d'abonnement.

Formule A : La carte à l'année coûte $55 \in$ et le prix d'une entrée est de $20 \in$.

Formule B : La carte à l'année coûte $80 \in$ et le prix d'une entrée est de $15 \in$.

On note y le nombre d'entrées.

- 1 Exprimer, en fonction de y, le coût à l'année avec la formule A.
- **2** Exprimer, en fonction de y, le coût à l'année avec la formule B.
- 3 A partir de combien d'entrées dans l'année, la formule B se révèle-t-elle la plus intéressante?

Exercice 5: (5 points)

Soit trois points A, B et C non alignés. On note D et E les points définis respectivement par :

$$\overrightarrow{AD} = 2\overrightarrow{AB} + \overrightarrow{AC} \quad \text{et} \quad \overrightarrow{CE} = -2\overrightarrow{AB}.$$

- 1 Faire une figure.
- $\fbox{\textbf{2}}$ En utilisant judicieusement la relation de Chasles, montrer que $\overrightarrow{CD}=2\overrightarrow{AB}.$
- $\boxed{\mathbf{3}}$ Que peut-on dire des droites (CD) et (AB)?
- 4 Montrer que le point E est le symétrique du point D par rapport au point C.