Exercice 1: (3 points)

Soit la fonction trinôme f suivante : $f(x) = 2x^2 + 12x + 53$.

- 1 Déterminer la forme canonique de f(x).
- **2** En déduire les variations de f et dresser le tableau de variation de f.
- 3 D'après le tableau de variation de f, la parabole représentant f coupe-t-elle l'axe des abscisses? Pourquoi?

Exercice 2: (3 points)

- 1 Résoudre l'équation suivante avec un changement de variable approprié : $2x + 5\sqrt{x} 3 = 0$.
- **2** Résoudre l'inéquation suivante : $\frac{1-2x}{x^2-5x+4} \ge 0$.

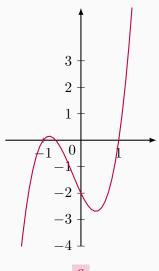
Exercice 3: (4 points)

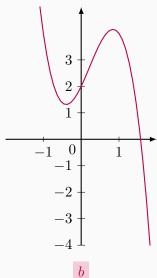
- **1 a** Monter que pour tout nombre réel x de l'intervalle $[1; +\infty[: \sqrt{x} \le x \le x^2]$.
 - (b) Soit a un réel tel que $1 \le a \le 2$. Comparer 3a 1, $\sqrt{3a 1}$ et $(3a 1)^2$.
- **2** Soit f la fonction telle que : $f(x) = \sqrt{x^2 3x 4}$.
 - (a) Donner le domaine de définition de f.
 - (b) Étudier le sens de variation de f sur chaque intervalle de son ensemble de définition

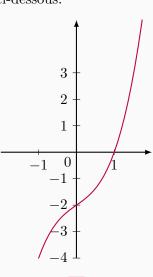
Exercice 4: (3 points)

On considère la fonction f définie par : $f(x) = 3x^3 + 2x^2 - 3x - 2$.

- 1 | Montrer que 1 est une racine de f.
- En déduire une factorisation de f(x) sous la forme $f(x) = (x-1)(ax^2 + bx + c)$.
- 3 En déduire la courbe représentative de f parmi les trois proposées ci-dessous.







Exercice 5: (3 points)

Soit f définie sur \mathbb{R} par f(x) = |x - 1| + 3|x + 1|.

- $\boxed{\mathbf{1}}$ Exprimer f(x) sans valeur absolue, selon les valeurs de x.
- $\boxed{\mathbf{2}}$ Représenter graphiquement la fonction f.
- **3** Résoudre l'inéquation f(x) > 2.

Exercice 6: (4 points)

On considère les droites (d_1) , (d_2) et (d_3) d'équation respective :

- $-(d_1): 2x + y + 4 = 0;$
- $-(d_2): -x + 2y 5 = 0;$
- $--(d_3): 3x y + 9 = 0.$
- $\boxed{\mathbf{1}}$ $\boxed{\mathbf{a}}$ Démontrer que (d_1) et (d_2) sont sécantes.
 - (b) Déterminer les coordonnées de A, point d'intersection de (d_1) et (d_2) .
- $\boxed{\mathbf{2}}$ Montrer que (d_1) , (d_2) et (d_3) sont concourantes.

Exercice 7: (2 points - bonus)

Soit a un réel donné. Pour chacune des fonctions suivantes, calculer le taux d'accroissement en a, puis déterminer si f est dérivable en a. Lorsque c'est le cas, donner f'(a).

- $\boxed{\mathbf{1}}$ $f(x) = mx + p, m \in \mathbb{R}, p \in \mathbb{R}, a \text{ r\'eel quelconque.}$
- **2** $f(x) = 2\sqrt{x} 1, a = 4.$