Série d'exercices

Corrigés

Soit f la fonction définie pour tout réel x par :

$$f(x) = \left(\cos x + \sin x\right)^2 + \left(\cos x - \sin x\right)^2.$$

Montrer que f est une fonction constante.

Exercice n°2

On définit la fonction f par :

$$f(x) = \frac{\cos x}{1 + \sin x}.$$

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. Montrer que f est périodique.
- 3. Déterminer f'(x), puis en déduire le sens de variations de f sur $\left|-\frac{\pi}{2}; \frac{3\pi}{2}\right|$.

Exercice n°3

On considère la fonction définie sur \mathbb{R} par :

$$f(x) = \cos^3 x \cos(3x).$$

Montrer que f est π -périodique et paire.

Exercice nº4

On considère la fonction définie sur $\mathbb R$ par :

$$f(x) = \sin^3 x \cos(3x).$$

Montrer que f est π -périodique et impaire.

Exercice n°5

On considère la fonction f définie sur $\left]-\frac{\pi}{4};\frac{\pi}{4}\right[$ par :

$$f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$$

- 1. Calculer f'(x).
- 2. En déduire alors le sens de variations de f.

Exercice n°6

En sciences physiques, notamment en électricité ou en acoustique, on rencontre souvent des fonctions f de la forme :

$$f(t) = a\sin(\omega t + \varphi)$$

où φ est appelé la phase et ω , la pulsation.

Montrer que:

$$f'' + \omega^2 f = 0.$$

Exercice n°7

Classe: Tle Spé Maths

On considère la fonction $f(x) = \cos x - 1 + \frac{1}{2}x^2$.

Lycée: Evariste Galois

- 1. Calculer f'(x) puis f''(x).
- 2. Montrer que $f''(x) \ge 0$ pour tout réel x et en déduire les variations de la fonction f' sur .
- 3. Calculer f'(0) et en déduire les variations de f
- 4. Montrer alors que pour tout réel x, $\cos x \ge 1 \frac{1}{2}x^2$.
- 5. En considérant une autre fonction g(x), montrer de la même façon que pour tout réel x, $\cos x \le 1 \frac{1}{2}x^2 + \frac{1}{24}x^4$.
- 6. Donner un encadrement de $\cos\frac{\pi}{50}$. Sachant que $\frac{\pi^4}{150000000} < 10^{-6}, \text{ que cela vous inspire-t-il pour la valeur approchée de <math>\cos\frac{\pi}{50}$ à 10^{-6} près?

Exercice n°8

On souhaite étudier la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \cos u_n.$$

1. Écrire un programme Python permettant de calculer tous les termes jusqu'à u_{30} .

On peut ainsi conjecturer que la suite converge.

- Écrire un programme Python permettant de calculer tous les termes jusqu'à ce que la différence entre deux termes consécutifs devienne inférieure ou égale à 10⁻⁵, en affichant l'indice de chaque terme.
- 3. La suite semble-t-elle monotone?

On pose pour tout entier naturel n:

$$v_n = u_{2n}$$
.

- 4. Exprimer v_{n+1} en fonction de v_n .
- 5. Montrer que la fonction $f: x \mapsto \cos(\cos x)$ est croissante sur [0;1].
- 6. Montrer par récurrence que pour tout entier naturel $n, 0 < v_{n+1} < v_n \leqslant 1$.
- 7. Déduire alors que la suite converge. Donner alors une valeur approchée de sa limite à 10^{-6} près.