Série d'exercices

Corrigés

Classe: 1re SPE

Lycée : Evariste Galois

- I le milieu de [AB];
- J le milieu de [AD];
- K le milieu de [ID].
- 1. Montrer que $\overrightarrow{DK} \cdot \overrightarrow{AB} = \frac{1}{4}AB^2$.
- 2. Montrer que (AK) et (BJ) sont perpendiculaires.

Exercice n°4

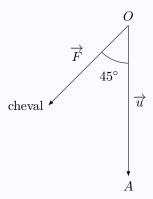
1. Deux forces \overrightarrow{F}_1 et \overrightarrow{F}_2 sont appliquées en un point O, formant un angle de 50°.

Leur intensité est respectivement de 300 N et 200 N.

Par définition, la résultante est le vecteur $\overrightarrow{R} = \overrightarrow{F}_1 + \overrightarrow{F}_2$.

Calculer l'intensité de cette résultante.

2. Pour tirer sur 50 mètres une péniche, un cheval exerce une force \overrightarrow{F} de 2000 N au point où est accrochée la corde sur la péniche. La corde fait un angle de 45° avec la direction de la péniche.

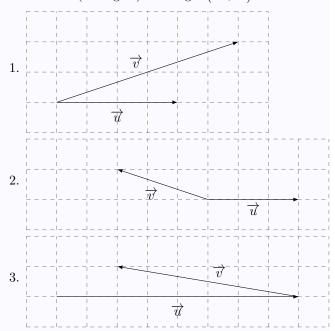


On rappelle que le travail d'une force \overrightarrow{F} est $W = \overrightarrow{F} \cdot \overrightarrow{u}$, où \overrightarrow{u} est un vecteur représentant le déplacement de l'objet.

- (a) Calculer W.
- (b) Calculer l'intensité de la force que doit exercer un bateau tirant cette même péniche et se déplaçant dans la même direction que celle-ci pour que le travail soit le même.

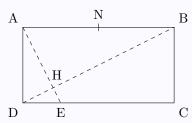
Exercice n°1

Dans chacun des cas suivants, déterminer le produit scalaire $\overrightarrow{u} \cdot \overrightarrow{v}$, puis en déduire une valeur approchée de la mesure (en degrés) de l'angle $(\overrightarrow{u}, \overrightarrow{v})$.



Exercice n°2

ABCD est un rectangle tel que AB = 4 et AD = 2. E est le point de [DC] tel que DE = 1. Les droites (AE) et (BD) se coupent en H et N est le milieu de [AB].

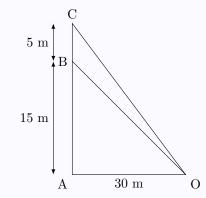


1. Décomposer \overrightarrow{AE} et \overrightarrow{BD} à l'aide de la relation de Chasles, puis calculer $\overrightarrow{AE} \cdot \overrightarrow{BD}$.

Que peut-on conclure quant à (AE) et (BD)?

- 2. En calculant de deux façons différentes \overrightarrow{AE} . \overrightarrow{BD} , trouver BH.
- 3. Montrer que $\overrightarrow{HA} + \overrightarrow{HB} = 2\overrightarrow{HN}$.
- 4. Calculer HA, puis montrer que $\overrightarrow{HN} \cdot \overrightarrow{HA} = \frac{8}{5}$.
- 5. Justifier que HN = 2.
- 6. Calculer $\cos(\widehat{AHN})$ et en déduire une valeur approchée de \widehat{AHN} au degré près.

Exercice n°5



${\bf Exercice}\,\;{\bf n}^{\circ}3$

Soit ABCD un carré. On pose :

1. Montrer que

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = OA^2 + AB \times AC.$$

2. Calculer \widehat{BOC} .

Exercice n°6

Soit ABCD un carré de centre O tel que AB = 2. On pose I le milieu de [AB].

1. Démontrer que l'ensemble des points M tels que

$$\overrightarrow{AB} \cdot \overrightarrow{AM} = 2$$

est la droite (OI).

2. (a) Montrer que, quel que soit le point M du plan,

 $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - 1.$

(b) Quel est l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 4$?

Exercice n°7

On considère deux points A et B tels que AB=6, ainsi que I le milieu de [AB].

On pose \mathcal{E}_k l'ensemble des points M tel que

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = k,$$

où $k \in \mathbb{R}$.

1. Montrer que pour tout point M du plan,

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - 9.$$

- 2. En déduire \mathcal{E}_{16} .
- 3. Pour quelles valeurs de k l'ensemble \mathcal{E}_k est-il réduit à l'ensemble vide?

Exercice n°8

- 1. Soit ABCD un parallélogramme tel que AB=5, AD=3 et AC=6.
 - (a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AD}$.
 - (b) En déduire la valeur approchée à l'unité de la mesure de l'angle \widehat{DAB} .
- 2. Soit EFGH un parallélogramme tel que $EF=6, \\ EH=FH=5.$
 - (a) Calculer $\overrightarrow{EF} \cdot \overrightarrow{EH}$.
 - (b) En déduire la valeur approchée à l'unité de la mesure de l'angle \widehat{FEH} .
- 3. Soit IJKL un parallélogramme tel que IK=8,5 et JL=5
 - (a) Calculer $\overrightarrow{IJ} \cdot \overrightarrow{IL}$.
 - (b) Montrer que $\overrightarrow{IJ} \cdot \overrightarrow{IK} = IJ^2 + \frac{189}{16}$.
 - (c) En déduire que $IJ^2 8.5 \cos(\overrightarrow{IJ})IJ + \frac{189}{4} = 0.$
 - (d) En déduire que $\cos^2(\overrightarrow{IJ},\overrightarrow{IK}) \geqslant \frac{189}{289}$.
 - (e) En déduire un encadrement approximatif (à l'unité près) de l'angle $(\overrightarrow{IJ};\overrightarrow{IK})$ en degrés.

Exercice n°9

Dans le plan, on considère un point M et un cercle Γ , de centre O et de rayon r.

Soit d une droite passant par M et coupant Γ en deux points A et B.

On appelle puissance de M par rapport à Γ le nombre : $\mathcal{P}_{\Gamma}(M) = OM^2 - r^2$.

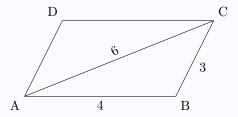
- 1. En considérant le projeté orthogonal de O sur (AB), c'est-à-dire le point H de (AB) tel que $(OH) \perp (AB)$, montrer que :
 - si M est à l'extérieur de Γ alors $MA \times MB = \mathcal{P}_{\Gamma}(M)$;
 - sinon, $MA \times MB = -\mathcal{P}_{\Gamma}(M)$
- 2. On considère un cercle Γ' , de centre O' distinct de O, et de rayon r'. Soit M un point tel que $\mathcal{P}_{\Gamma}(M) = \mathcal{P}_{\Gamma'}(M)$.
 - (a) Soient K le projeté orthogonal de M sur (OO') et I le milieu de [OO'].

 Après avoir justifié que $r^2 r'^2 = MO^2 MO'^2$, montrer que $r^2 r'^2 = 2\overrightarrow{OO'} \cdot \overrightarrow{IK}$.
 - (b) Déterminer alors l'ensemble des points M. Cet ensemble est appelé l'axe radical des deux cercles.
- 3. Soit Γ'' un troisième cercle de centre O'' tel que O'' n'appartient pas à (OO').

Montrer que les trois axes radicaux sont concourants en vous aidant de la notion de puissance d'un point par rapport à un cercle.

Evereice nº10

On considère la figure suivante :



ABCD est un parallélogramme tel que $AB=4,\,BC=3$ et AC=6.

Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Exercice n°11

On considère un carré ABCD de côté 1.

On construit alors les points E et F tels que :

- BEC est un triangle équilatéral;
- F est un point de la droite (BC).

Déterminer la position du point F pour que les droites (AF) et (DE) soient perpendiculaires.

Indication: on pourra se placer dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD})$.